Affiliation:
1. Department of Computer Science, Columbia University , New York, NY 10027, United States
2. Department of Data Science, Columbia University , New York, NY 10027, United States
3. Department of Obstetrics and Gynecology, Columbia University , New York, NY 10027, United States
4. Department of Computer Science, CUNY Hunter College , New York, NY 10065, United States
Abstract
Abstract
Objective
Preterm birth (PTB) is a major determinant of neonatal mortality, morbidity, and childhood disability. In this article, we present a longitudinal analysis of the risk factors associated with PTB and how they have varied over the years: starting from 1968 when the CDC first started, reporting the natality data, up until 2021. Along with this article, we are also releasing an RShiny web application that will allow for easy consumption of this voluminous dataset by the research community. Further, we hope this tool can aid clinicians in the understanding and prevention of PTB.
Materials and Methods
This study used the CDC Natality data from 1968 to 2021 to analyze trends in PTB outcomes across the lens of various features, including race, maternal age, education, and interval length between pregnancies. Our interactive RShiny web application, CDC NatView, allows users to explore interactions between maternal risk factors and maternal morbidity conditions and the aforementioned features.
Results
Our study demonstrates how CDC data can be leveraged to conduct a longitudinal analysis of natality trends in the United States. Our key findings reveal an upward trend in late PTBs, which is concerning. Moreover, a significant disparity exists between African American and White populations in terms of PTB. These disparities persist in other areas, such as education, body-mass index, and access to prenatal care later in pregnancy.
Discussion
Another notable finding is the increase in maternal age over time. Additionally, we confirm that short interpregnancy intervals (IPIs) are a risk factor for PTBs. To facilitate the exploration of pregnancy risk factors, infections, and maternal morbidity, we developed an open-source RShiny tool called CDC NatView. This software offers a user-friendly interface to interact with and visualize the CDC natality data, which constitutes an invaluable resource.
Conclusion
In conclusion, our study has shed light on the rise of late PTBs and the persistent disparities in PTB rates between African American and White populations in the US. The increase in maternal age and the confirmation of a short IPI as a risk factor for PTB are noteworthy findings. Our open-source tool, CDC NatView, can be a valuable resource for further exploration of the CDC natality data to enhance our understanding of pregnancy risk factors and the interaction of PTB outcomes and maternal morbidities.
Publisher
Oxford University Press (OUP)