Trajectories: a framework for detecting temporal clinical event sequences from health data standardized to the Observational Medical Outcomes Partnership (OMOP) Common Data Model
Author:
Affiliation:
1. STACC, Tartu, Estonia
2. Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
3. Institute of Computer Science, University of Tartu, Tartu, Estonia
4. Quretec, Tartu, Estonia
Abstract
Publisher
Oxford University Press (OUP)
Subject
Health Informatics
Link
https://academic.oup.com/jamiaopen/article-pdf/5/1/ooac021/42926782/ooac021.pdf
Reference27 articles.
1. Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients;Jensen;Nat Commun,2014
2. A large-cohort, longitudinal study determines precancer disease routes across different cancer types;Hu;Cancer Res,2019
3. Disease trajectory browser for exploring temporal, population-wide disease progression patterns in 7.2 million Danish patients;Siggaard;Nat Commun,2020
4. A system-level analysis of patient disease trajectories based on clinical, phenotypic and molecular similarities;Giannoula;Bioinformatics,2021
5. Disease trajectories and mortality among individuals diagnosed with depression: a community-based cohort study in UK Biobank;Han;Mol Psychiatry,2021
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Limitations of NHIC claim code-based surveillance and the necessity of UDI implementation in Korea;Scientific Reports;2024-09-09
2. Disease Trajectories from Healthcare Data: Methodologies, Key Results, and Future Perspectives;Annual Review of Biomedical Data Science;2024-08-23
3. Disease trajectory of high neuroticism and the relevance to psychiatric disorders: A retro‐prospective cohort study;Acta Psychiatrica Scandinavica;2023-12-06
4. Standardising the structure of routinely collected data for childhood ocular inflammation: a SNOMED-CT mapping project;2023-10-25
5. Transforming Estonian health data to the Observational Medical Outcomes Partnership (OMOP) Common Data Model: lessons learned;JAMIA Open;2023-10-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3