Open sets in computability theory and reverse mathematics

Author:

Normann Dag1,Sanders Sam2

Affiliation:

1. Department of Mathematics, The University of Oslo, PO Box 1053, Blindern, N-0316 Oslo, Norway

2. Department of Mathematics, Technische Universitaet Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany

Abstract

Abstract To enable the study of open sets in computational approaches to mathematics, lots of extra data and structure on these sets is assumed. For both foundational and mathematical reasons, it is then a natural question, and the subject of this paper, what the influence of this extra data and structure is on the logical and computational properties of basic theorems pertaining to open sets. To answer this question, we study various basic theorems of analysis, like the Baire category, Heine, Heine–Borel, Urysohn and Tietze theorems, all for open sets given by their (third-order) characteristic functions. Regarding computability theory, the objects claimed to exist by the aforementioned theorems undergo a shift from ‘computable’ to ‘not computable in any type 2 functional’, following Kleene’s S1–S9. Regarding reverse mathematics, the latter’s main question, namely which set existence axioms are necessary for proving a given theorem, does not have a unique or unambiguous answer for the aforementioned theorems, working in Kohlenbach’s higher-order framework. A finer study of representations of open sets leads to the new ‘$\varDelta$-functional’ that has unique (computational) properties.

Funder

John Templeton Foundation

Deutsche Forschung Gemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference62 articles.

1. A constructive version of the Lusin separation theorem;Aczel,2009

2. functional (‘Dialectica’) interpretation;Avigad;Handbook of Proof Theory,1998

3. Probabilistic computability and choice;Brattka;Information and Computation,2015

4. On the uniform computational content of the Baire category theorem;Brattka;Notre Dame Journal of Formal Logic,2018

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the logical and computational properties of the Vitali covering theorem;Annals of Pure and Applied Logic;2025-01

2. On some computational properties of open sets;Journal of Logic and Computation;2024-09-11

3. Computability and non-monotone induction;Computability;2024-06-13

4. Exploring the abyss in Kleene’s computability theory;Computability;2024-06-13

5. BIG IN REVERSE MATHEMATICS: MEASURE AND CATEGORY;The Journal of Symbolic Logic;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3