Intuitionistic multi-agent subatomic natural deduction for belief and knowledge

Author:

Więckowski Bartosz1

Affiliation:

1. Institut für Philosophie, Goethe-Universität Frankfurt am Main, Norbert-Wollheim-Platz 1, D-60629 Frankfurt am Main, Germany

Abstract

Abstract This paper proposes natural deduction systems for the representation of inferences in which several agents participate in deriving conclusions about what they believe or know, where belief and knowledge are understood in an intuitionistic sense. Multi-agent derivations in these systems may involve relatively complex belief (resp. knowledge) constructions which may include forms of nested, reciprocal, shared, distributed or universal belief/knowledge as well as attitudes de dicto/re/se. The systems consist of two main components: multi-agent belief bases which assign to each agent a subatomic system that represents the agent’s beliefs concerning atomic sentences and a set of multi-agent labelled rules for logically compound formulae. Derivations in these systems normalize. Moreover, normal derivations possess the subexpression property (a refinement of the subformula property) which makes them fully analytic. Relying on the normalization result, a proof-theoretic approach to the semantics of the intensional operators for intuitionistic belief/knowledge is presented which explains their meaning entirely by appeal to the structure of derivations. Importantly, this proof-theoretic semantics is autarkic with respect to its foundations as the systems (unlike, e.g. external/labelled proof systems which internalize possible worlds truth conditions) are not defined on the basis of a possible worlds semantics. Detailed applications to a logical puzzle (McCarthy’s three wise men puzzle) and to a semantical difficulty (Geach’s problem of intentional identity), respectively, illustrate the systems. The paper also provides comparisons with other approaches to intuitionistic belief/knowledge and multi-agent natural deduction.

Funder

DFG

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference50 articles.

1. Intuitionistic epistemic logic;Artemov;The Review of Symbolic Logic,2016

2. Building proofs in context;Attardi,1994

3. An intuitionistic modal logic;Bierman;Studia Logica,2000

4. Deep sequent systems for modal logic;Brünnler;Archive for Mathematical Logic,2009

5. Multi-agent reasoning with belief contexts: the approach and a case study;Cimatti,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counterfactual Assumptions and Counterfactual Implications;Outstanding Contributions to Logic;2024

2. Negative Predication and Distinctness;Logica Universalis;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3