Design and quality control of large-scale two-sample Mendelian randomization studies

Author:

Haycock Philip C12ORCID,Borges Maria Carolina12,Burrows Kimberley12ORCID,Lemaitre Rozenn N3,Harrison Sean12ORCID,Burgess Stephen4,Chang Xuling56ORCID,Westra Jason7,Khankari Nikhil K8,Tsilidis Kostas K910,Gaunt Tom12,Hemani Gibran12,Zheng Jie12ORCID,Truong Therese11,O’Mara Tracy A1213,Spurdle Amanda B1213,Law Matthew H1415ORCID,Slager Susan L16,Birmann Brenda M17ORCID,Saberi Hosnijeh Fatemeh18,Mariosa Daniela19ORCID,Amos Christopher I20,Hung Rayjean J21,Zheng Wei22ORCID,Gunter Marc J23,Davey Smith George12ORCID,Relton Caroline12,Martin Richard M1224,Tintle Nathan,Peters Ulrike,Rice Terri,Cheng Iona,Jenkins Mark,Gallinger Steve,Cornish Alex J,Sud Amit,Vijayakrishnan Jayaram,Wrensch Margaret,Johansson Mattias,Norman Aaron D,Klein Alison,Clay-Gilmour Alyssa,Franke Andre,Ardisson Korat Andres V,Wheeler Bill,Nilsson Björn,Smith Caren,Heng Chew-Kiat,Song Ci,Riadi David,Claus Elizabeth B,Ellinghaus Eva,Ostroumova Evgenia,Hosnijeh ,de Vathaire Florent,Cugliari Giovanni,Matullo Giuseppe,Ng Irene Oi-Lin,Cerhan James R,Passow Jeanette E,Foo Jia Nee,Han Jiali,Liu Jianjun,Barnholtz-Sloan Jill,Schildkraut Joellen M,Maris John,Wiemels Joseph L,Hemminki Kari,Yang Keming,Kiemeney Lambertus A,Wu Lang,Amundadottir Laufey,Stern Marc-Henri,Boutron Marie-Christine,Iles Mark Martin,Purdue Mark P,Stanulla Martin,Bondy Melissa,Gaudet Mia,Lenha Mobuchon,Camp Nicki J,Sham Pak Chung,Guénel Pascal,Brennan Paul,Taylor Philip R,Gharahkhani Puya,Ostrom Quinn,Stolzenberg-Solomon Rachael,Dorajoo Rajkumar,Houlston Richard,Jenkins Robert B,Diskin Sharon,Berndt Sonja I,Tsavachidis Spiridon,Enroth Stefan,Channock Stephen J,Harrison Tabitha,Galesloot Tessel,Gyllensten Ulf,Joseph Vijai,Shi Y,Yang Wenjian,Lin Yi,Van Den Eeden Stephen K,

Affiliation:

1. MRC Integrative Epidemiology Unit (IEU), University of Bristol , Bristol, UK

2. Population Health Sciences, Bristol Medical School, University of Bristol , Bristol, UK

3. Department of Medicine, University of Washington , Seattle, WA, USA

4. MRC Biostatistics Unit, University of Cambridge , Cambridge, UK

5. Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore

6. Khoo Teck Puat—National University Children's Medical Institute, National University Health System , Singapore, Singapore

7. Department of Mathematics, Statistics, and Computer Science, Dordt College, Sioux Center , IA, USA

8. Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, TN, USA

9. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London , London, UK

10. Department of Hygiene and Epidemiology, University of Ioannina School of Medicine , Ioannina, Greece

11. Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESP , Villejuif, France

12. Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia

13. School of Medicine, Faculty of Health Sciences, University of Queensland , Brisbane, Australia

14. Statistical Genetics, QIMR Berghofer Medical Research Institute , Brisbane, QLD, Australia

15. School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, QLD, Australia

16. Department of Health Sciences Research, Mayo Clinic , Rochester, MN, USA

17. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA

18. Institute for Risk Assessment Sciences, Utrecht University , Utrecht, The Netherlands

19. Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC) , Lyon, France

20. Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine , Houston , USA

21. Lunenfeld-Tanenbaum Research Institute, Sinai Health and University of Toronto , Toronto, Canada

22. Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center , Nashville, TN, USA

23. Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC) , Lyon, France

24. NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol , Bristol, UK

Abstract

Abstract Background Mendelian randomization (MR) studies are susceptible to metadata errors (e.g. incorrect specification of the effect allele column) and other analytical issues that can introduce substantial bias into analyses. We developed a quality control (QC) pipeline for the Fatty Acids in Cancer Mendelian Randomization Collaboration (FAMRC) that can be used to identify and correct for such errors. Methods We collated summary association statistics from fatty acid and cancer genome-wide association studies (GWAS) and subjected the collated data to a comprehensive QC pipeline. We identified metadata errors through comparison of study-specific statistics to external reference data sets (the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalogue and 1000 genome super populations) and other analytical issues through comparison of reported to expected genetic effect sizes. Comparisons were based on three sets of genetic variants: (i) GWAS hits for fatty acids, (ii) GWAS hits for cancer and (iii) a 1000 genomes reference set. Results We collated summary data from 6 fatty acid and 54 cancer GWAS. Metadata errors and analytical issues with the potential to introduce substantial bias were identified in seven studies (11.6%). After resolving metadata errors and analytical issues, we created a data set of 219 842 genetic associations with 90 cancer types, generated in analyses of 566 665 cancer cases and 1 622 374 controls. Conclusions In this large MR collaboration, 11.6% of included studies were affected by a substantial metadata error or analytical issue. By increasing the integrity of collated summary data prior to their analysis, our protocol can be used to increase the reliability of downstream MR analyses. Our pipeline is available to other researchers via the CheckSumStats package (https://github.com/MRCIEU/CheckSumStats).

Funder

Cancer Research UK

Integrative Cancer Epidemiology Programme

National Institute for Health Research

Biomedical Research Centre at University Hospitals Bristol

Weston NHS Foundation Trust

University of Bristol

National Institute for Health Research Senior Investigator

Department of Health and Social Care

MRC Integrative Epidemiology Unit

Medical Research Council

Skills Development Fellowship

National Institute for Health and Care Research

Leeds Biomedical Research Centre

NHS

NIHR

NIH

NHMRC

Cancer Prevention Research Institute of Texas

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3