Minimally Invasive Beaded Electrosurgical Dissectors, Basic Science, and Pilot Studies

Author:

Weber Taiyo C,Jewell Mark,Schulman Carl I,Morgan Jefferson,Lee Alison M,Olivier Alicia K,Swanson Elizabeth A

Abstract

Abstract Background Minimally invasive beaded electrosurgical dissectors (“BEED devices”) provide simultaneous sharp dissection, blunt dissection, and electrosurgical coagulation while performing 100 cm2 porcine tissue plane dissections in 0.8 to 3 min with minimal bleeding and no perforations. Objectives The aim of the study was to report the basic science and potential clinical applications and to video document the speed and quality of planar dissections in in vivo and ex vivo porcine models with thermal damage quantified by thermal and histopathologic measurements. Additionally, in vivo porcine specimens were followed for 90 days to show whether adverse events occurred on a gross or macroscopic basis, as evidenced by photography, videography, physical examination, and dual ultrasonography. Methods Ex vivo porcine models were subjected to 20, 30, and 50 W in single-stroke passages with BEED dissectors (granted FDA 510(k) clearance (K233002)) with multichannel thermocouple, 3 s delay recordation combined with matching hematoxylin and eosin (H&E) histopathology. In vivo porcine models were subjected to eight 10 × 10 cm dissections in each of 2 subjects at 20, 30, and 50 W and evaluated periodically until 90 days, wherein histopathology for H&E, collagen, and elastin was taken plus standard and Doppler ultrasounds prior to euthanasia. Results Five to 8 mm width dissectors were passed at 1 to 2 cm/s in ex vivo models (1-10 cm/s in vivo models) with an average temperature rise of 5°C at 50 W. Clinically evidenced seromas occurred in the undressed, unprotected wounds, and resolved well prior to 90 days, as documented by ultrasounds and histopathology. Conclusions In vivo and ex vivo models demonstrated thermal values that were below levels known to damage subcutaneous adipose tissue or skin. Tissue histopathology confirmed healing parameters while Doppler ultrasound demonstrated normal blood flow in posttreatment tissues. Level of Evidence: 4

Funder

Excelsior Resources LLC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3