Automatic estimation of lipid content from in situ images of Arctic copepods using machine learning

Author:

Maps Frédéric12,Storożenko Piotr Pasza3,Świeżewski Jędrzej3,Ayata Sakina-Dorothée4

Affiliation:

1. Département de biologie, Université Laval , 1045 av. de la Médecine, Québec (QC) G1V 0A6 , Canada

2. International Research Laboratory Takuvik (LRI 3376), Université Laval – CNRS , 1045 av. de la Médecine, Québec (QC) G1V 0A6, Canada

3. Appsilon Data for Good , ul. Chmielna 2/31, 00-020, Warszawa , Poland

4. Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Sorbonne Université, CNRS, IRD, MNHN , 4 place Jussieu, 75005, Paris , France

Abstract

Abstract In Arctic marine ecosystems, large planktonic copepods form a crucial hub of matter and energy. Their energy-rich lipid stores play a central role in marine trophic networks and the biological carbon pump. Since the past ~15 years, in situ imaging devices provide images whose resolution allows us to estimate an individual copepod’s lipid sac volume, and this reveals many ecological information inaccessible otherwise. One such device is the Lightframe On-sight Keyspecies Investigation. However, when done manually, weeks of work are needed by trained personnel to obtain such information for only a handful of sampled images. We removed this hurdle by training a machine learning algorithm (a convolutional neural network) to estimate the lipid content of individual Arctic copepods from the in situ images. This algorithm obtains such information at a speed (a few minutes) and a resolution (individuals, over half a meter on the vertical), allowing us to revisit historical datasets of in situ images to better understand the dynamics of lipid production and distribution and to develop efficient monitoring protocols at a moment when marine ecosystems are facing rapid upheavals and increasing threats.

Funder

NSERC Discovery

Institut des Sciences du Calcul et des Données of Sorbonne Université

sponsored project-team From ObseRving to Modelling oceAn Life

French Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3