Allometry of carbon and nitrogen content and growth rate in a diverse range of coccolithophores

Author:

Villiot Naomi1,Poulton Alex J1,Butcher Elizabeth T2,Daniels Lucie R2,Coggins Aimee23

Affiliation:

1. The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AS, UK

2. Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO18 3ZH, UK

3. Atmospheric and Ocean Sciences, College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK

Abstract

Abstract As both photoautotrophs and calcifiers, coccolithophores play important roles in ecosystems and biogeochemical cycles. Though some species form blooms in high-latitude waters, low-latitude communities exhibit high diversity and niche diversification. Despite such diversity, our understanding of the clade relies on knowledge of Emiliana huxleyi. To address this, we examine carbon (C) and nitrogen (N) content of strains (n = 9) from the main families of the calcifying Haptophyceae, as well as allometry and cell size frequency across extant species. Coccolithophore cell size is constrained, with ~71% of 159 species smaller than 10 μm in diameter. Growth rates scale with cell biovolume (μ = 1.83 × cell volume−0.19), with an exponent close to metabolic theory. Organic carbon (C) per cell is lower than for other phytoplankton, providing a coccolithophore-specific relationship between cell organic C content and biovolume (pg C cell−1 = 0.30 × cell volume0.70). Organic C to N ratios (~8.3 mol:mol) are similar to other phytoplankton, implying little additional N cost for calcification and efficient retention and recycling of cell N. Our results support observations that coccolithophores are efficient competitors in low-nutrient conditions, able to photosynthesize, calcify and run the routine metabolic machinery necessary without any additional need for N relative to noncalcifying algae.

Funder

Ministry of Science and Technology

BCIT School of Energy

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3