Current practice in plankton metabarcoding: optimization and error management

Author:

Santoferrara Luciana F1ORCID

Affiliation:

1. DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY AND DEPARTMENT OF MARINE SCIENCES, UNIVERSITY OF CONNECTICUT, ONE UNIVERSITY PLACE, STAMFORD, CT 06901, USA

Abstract

AbstractHigh-throughput sequencing of a targeted genetic marker is being widely used to analyze biodiversity across taxa and environments. Amid a multitude of exciting findings, scientists have also identified and addressed technical and biological limitations. Improved study designs and alternative sampling, lab and bioinformatic procedures have progressively enhanced data quality, but some problems persist. This article provides a framework to recognize and bypass the main types of errors that can affect metabarcoding data: false negatives, false positives, artifactual variants, disproportions and incomplete or incorrect taxonomic identifications. It is crucial to discern potential error impacts on different ecological parameters (e.g. taxon distribution, community structure, alpha and beta-diversity), as error management implies compromises and is thus directed by the research question. Synthesis of multiple plankton metabarcoding evaluations (mock sample sequencing or microscope comparisons) shows that high-quality data for qualitative and some semiquantitative goals can be achieved by implementing three checkpoints: first, rigorous protocol optimization; second, error minimization; and third, downstream analysis that considers potentially remaining biases. Conclusions inform us about the reliability of metabarcoding for plankton studies and, because plankton provides unique chances to compare genotypes and phenotypes, the robustness of this method in general.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3