Androgens regulate follicle stage-dependent pro- and anti-apoptosis in teleost ovaries through ZIP9 activation of different G proteins†

Author:

Converse Aubrey1ORCID,Thomas Peter1ORCID

Affiliation:

1. Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas, USA

Abstract

Abstract Androgens mediate a number of processes in mammalian and teleost ovaries in a follicle-stage dependent manner, including follicle growth, survival, and apoptosis. We recently reported that the membrane androgen receptor ZIP9 mediates apoptosis in Atlantic croaker granulosa/theca (G/T) cells from mature ovarian follicles, but the effects of androgens on early stage G/T cells in this model remains unknown. Here we show that testosterone mediates pro- and anti-apoptotic responses in a follicle stage-dependent manner in croaker ovarian follicle cells. Testosterone treatment decreased the incidence of apoptosis in G/T cells from early stage follicles (diameter <300 μm) but increased apoptosis in G/T cells from late stage follicles (diameter >400 μm). Small interfering RNA targeting ZIP9, but not the nuclear androgen receptor, blocked the anti-apoptotic response, indicating ZIP9 mediates anti-apoptotic in addition to pro-apoptotic responses. Testosterone treatment of early stage G/T cells resulted in opposite signaling outcomes from those previously characterized for the ZIP9-mediated apoptotic response including decreased cAMP and intracellular free zinc levels, and downregulation of pro-apoptotic member mRNA expression. While ZIP9-mediated apoptosis involves activation of a stimulatory G protein (Gs), activators of Gs signaling antagonized the anti-apoptotic response. Proximity ligation and G protein activation assays indicated that in G/T cells from early stage follicles ZIP9 is in close proximity and activates an inhibitory G protein, while in G/T cells from late stage follicles ZIP9 is in close proximity and activates Gs. This study demonstrates that ZIP9 mediates opposite survival responses of croaker G/T cells by activating different G proteins in a follicle stage-dependent manner.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3