Loss of mouse Y chromosome gene Zfy1 and Zfy2 leads to spermatogenesis impairment, sperm defects, and infertility

Author:

Yamauchi Yasuhiro12,Matsumura Takafumi34,Bakse Jackson12,Holmlund Hayden12,Blanchet Genevieve12,Carrot Emmaelle12,Ikawa Masahito34,Ward Monika A12

Affiliation:

1. Institute for Biogenesis Research , , Honolulu, HI, USA

2. John A. Burns School of Medicine, University of Hawaii , , Honolulu, HI, USA

3. Department of Experimental Genome Research , Research Institute for Microbial Diseases, , Suita, Osaka, Japan

4. Osaka University , Research Institute for Microbial Diseases, , Suita, Osaka, Japan

Abstract

Abstract Using mice with Y chromosome deficiencies and supplementing Zfy transgenes, we, and others, have previously shown that the loss of Y chromosome Zfy1 and Zfy2 genes is associated with infertility and spermiogenic defects and that the addition of Zfy transgenes rescues these defects. In these past studies, the absence of Zfy was linked to the loss of other Y chromosome genes, which might have contributed to spermiogenic phenotypes. Here, we used CRISPR/Cas9 to specifically remove open reading frame of Zfy1, Zfy2, or both Zfy1 and Zfy2, and generated Zfy knockout (KO) and double knockout (DKO) mice. Zfy1 KO and Zfy2 KO mice were both fertile, but the latter had decreased litters size and sperm number, and sperm headshape abnormalities. Zfy DKO males were infertile and displayed severe spermatogenesis defects. Postmeiotic arrest largely prevented production of sperm and the few sperm that were produced all displayed gross headshape abnormalities and structural defects within head and tail. Infertility of Zfy DKO mice could be overcome by injection of spermatids or sperm directly to oocytes, and the resulting male offspring had the same spermiogenic phenotype as their fathers. The study is the first describing detailed phenotypic characterization of mice with the complete Zfy gene loss. It provides evidence supporting that the presence of at least one Zfy homolog is essential for male fertility and development of normal sperm functional in unassisted fertilization. The data also show that while the loss of Zfy1 is benign, the loss of Zfy2 is mildly detrimental for spermatogenesis.

Funder

National Institutes of Health

Hawaii Community Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3