Clinical application of embryo aneuploidy testing by next-generation sequencing

Author:

Rubio Carmen1,Rodrigo Lorena1,Garcia-Pascual Carmen1,Peinado Vanessa1,Campos-Galindo Inmaculada1,Garcia-Herrero Sandra1,Simón Carlos23

Affiliation:

1. Igenomix, Valencia, Spain

2. Igenomix Foundation/Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain

3. Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain

Abstract

Abstract We review here the evolution in the field of embryo aneuploidy testing over the last 20 years, from the analysis of a subset of chromosomes by fluorescence in situ hybridisation to the transition toward a more comprehensive analysis of all 24 chromosomes. This current comprehensive aneuploidy testing most commonly employs next-generation sequencing (NGS). We present our experience in over 130 000 embryo biopsies using this technology. The incidence of aneuploidy was lower in trophectoderm biopsies compared to cleavage-stage biopsies. We also confirmed by NGS that embryo aneuploidy rates increased with increasing maternal age, mostly attributable to an increase in complex aneuploid embryos. In contrast, the number of MII oocytes retrieved or the use of oocyte vitrification did not affect aneuploidy rates. Similarly, neither maternal age, oocyte number, nor oocyte vitrification affected the incidence of mosaicism. Analysis of clinical outcomes, indications, and potential benefits of embryo aneuploidy testing revealed advanced maternal age as the most favored group, with some evidence of improved delivery rate per transfer as well as decreased miscarriage rates and time to pregnancy. Other indications are: recurrent miscarriage, repetitive implantation failure, severe male factor, previous trisomic pregnancy, and good prognosis patients mainly undergoing single embryo transfer, with the latter indication used to reduce the occurrence of multiple pregnancies without compromising cycle outcome. In conclusion, NGS has become the most appropriate technology for aneuploidy testing in trophectoderm biopsies, with accurate results, high throughput, and cost efficiency. This technology can be also applied to the analysis of the embryonic cell free DNA released to the culture media at blastocyst stage. This is a promising approach towards a non-invasive preimplantation genetic testing of aneuploidy.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3