Learning from Shared News: When Abundant Information Leads to Belief Polarization

Author:

Bowen T Renee1,Dmitriev Danil12,Galperti Simone12

Affiliation:

1. University of California, San Diego and National Bureau of Economic Research , United States

2. University of California, San Diego , United States

Abstract

AbstractWe study learning via shared news. Each period agents receive the same quantity and quality of firsthand information and can share it with friends. Some friends (possibly few) share selectively, generating heterogeneous news diets across agents. Agents are aware of selective sharing and update beliefs by Bayes’s rule. Contrary to standard learning results, we show that beliefs can diverge in this environment, leading to polarization. This requires that (i) agents hold misperceptions (even minor) about friends’ sharing and (ii) information quality is sufficiently low. Polarization can worsen when agents’ friend networks expand. When the quantity of firsthand information becomes large, agents can hold opposite extreme beliefs, resulting in severe polarization. We find that news aggregators can curb polarization caused by news sharing. Our results hold without media bias or fake news, so eliminating these is not sufficient to reduce polarization. When fake news is included, it can lead to polarization but only through misperceived selective sharing. We apply our theory to shed light on the polarization of public opinion about climate change in the United States.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference123 articles.

1. “Opinion Fluctuations and Disagreement in Social Networks,”;Acemoglu;Mathematics of Operations Research,2013

2. “Spread of (Mis)information in Social Networks,”;Acemoglu;Games and Economic Behavior,2010

3. “The Polarization of Reality,”;Alesina,2020

4. “The Welfare Effects of Social Media,”;Allcott;American Economic Review,2020

5. “Social Media and Fake News in the 2016 Election,”;Allcott;Journal of Economic Perspectives,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3