A Rapid, Shallow Whole Genome Sequencing Workflow Applicable to Limiting Amounts of Cell-Free DNA

Author:

Allsopp Rebecca C1ORCID,Page Karen1,Ambasager Bana2,Wadsley Marc K1,Acheampong Emmanuel1ORCID,Ntereke Tumisang P1,Guo Qi1,Lall Gurdeep Matharu1,Gleason Kelly L T2,Wren Evie2,Nteliopoulos Georgios2,Rushton Amelia J2,Coombes R Charles2,Shaw Jacqueline A1

Affiliation:

1. Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester , Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester , UK

2. Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus , Du Cane Road, London , UK

Abstract

Abstract Background Somatic copy number alterations (sCNAs) acquired during the evolution of breast cancer provide valuable prognostic and therapeutic information. Here we present a workflow for screening sCNAs using picogram amounts of cell-free DNA (cfDNA) and single circulating tumor cells (CTCs). Methods We repurposed the Ion ReproSeq PGS™ preimplantation genetic testing kit to perform shallow whole genome sequencing on 178 cfDNA samples (300 pg) and individual CTCs from 10 MBC patients with metastatic breast cancer (MBC) recovered by CellSearch®/DEPArray™. Results were analyzed using a tailored ichorCNA workflow. Results sCNAs were detected in cfDNA of 41/105 (39%) patients with MBC and 3/23 (13%) primary breast cancers on follow-up (PBC FU), all of whom subsequently relapsed. In 8 of 10 MBCs, individual CTCs had a higher copy number count than matched cfDNA. The median tumor fraction detected by ichorCNA was 0.34 (range 0.17–0.58) for MBC and 0.36 (range 0.31–0.37) for PBC FU. Patients with detectable tumor fraction (≥ 0.1) and TFx and OncomineTM variants had significantly lower overall survival rates (P values P = 0.002 and P < 0.0001 for the log-rank test, respectively). Conclusions The ReproSeq PGS assay is rapid, at approximately $120 per sample, providing both a sCNA profile and estimation of the tumor DNA fraction from limiting cfDNA template (300pg) and individual CTCs. The approach could be used to examine the copy number landscape over time to guide treatment decisions, support future trial designs, and be applied to low volume blood spot samples enabling remote monitoring.

Funder

Imperial College Healthcare NHS Trust

NIHR

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3