Dyslipidemia and hyperglycemia induce overexpression of Syndecan-3 in erythrocytes and modulate erythrocyte adhesion

Author:

Mallanna Smitha Honnalagere12,Thimmulappa Rajesh K3,Chilkunda Nandini D12

Affiliation:

1. CSIR-Central Food Technological Research Institute Department of Molecular Nutrition, , Cheluvamba Mansion, KRS Road, Mysore 570020, Karnataka, India

2. Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002, India

3. JSS Academy of Higher Education & Research Department of Biochemistry, JSS Medical College, , Sri Shivarathreeshwara Nagara, Bannimantap, Mysore 570015, Karnataka, India

Abstract

Abstract Erythrocytes are important vascular components that play vital roles in maintaining vascular homeostasis, in addition to carrying oxygen. Previously, we reported that the changes in the internal milieu (e.g. hyperglycemia or hypercholesterolemia) increase erythrocyte adhesion to various extracellular matrix components, potentially through altering glycosaminoglycans (GAGs). In this study, we have investigated the expression of syndecan (Sdc) family members that could be involved in mediating cytoadherence under conditions of dyslipidemia and hyperglycemia. Among the Sdc family members analysed, we found significant overexpression of Sdc-3 in erythrocyte membranes harvested from high-fat-fed control and diabetic animals. Animal studies revealed a positive correlation between Sdc-3 expression, blood sugar levels and erythrocyte adhesion. In the human study, diabetic cohorts with body mass index >24.9 showed significantly increased expression of Sdc-3. Interestingly, blocking the Sdc-3 moiety with an anti-Sdc-3 antibody revealed that the core protein might not be directly involved in erythrocyte adhesion to fibronectin despite the GAGs bringing about adhesion. Lastly, Nano liquid chromatography-mass spectrometry/MS verified the presence of Sdc-3 in erythrocyte membranes. In conclusion, the high-fat diet and diabetes modulated Sdc-3 expression in the erythrocyte membrane, which may alter its adhesive properties and promote vascular complications.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3