Acoustic logging array signal denoising using U-net and a case study in a TangGu oil field

Author:

Fu Xin1,Gou Yang2,Wei Fuqiang3

Affiliation:

1. College of Information Engineering, Shanghai Maritime University , Shanghai 200135 , China

2. Logistic Engineering College, Shanghai Maritime University , Shanghai 201306 , China

3. Institute of Geology and Geophysics, Chinese Academy of Sciences , Beijing 100029 , China

Abstract

Abstract This study developed a noise-reduction method for acoustic logging array signals using a deep neural network algorithm in the time-frequency domain. Initially, we derived analytical solutions for the received waveforms when the acoustic logging tool was positioned either at the centre or eccentrically within the borehole. To simulate the received waveforms across various formations, we developed a real-axis integration algorithm. Subsequently, we devised a noise-reduction algorithm workflow based on a convolutional neural network and configured the structure and parameters of the U-net using TensorFlow. To address the scarcity of open datasets, we established both signal and noise datasets. The signal dataset was generated using theoretical simulation encompassing various model parameters, while the noise dataset was collected during tool testing and downhole operations. The trained model demonstrated substantial noise-reduction capabilities during validation. To validate the effectiveness of the algorithm, we applied noise reduction to actual data collected during downhole operations in a TangGu oil field, yielding impressive results across different types of noisy data. Therefore, the U-net-based time-domain noise-reduction algorithm proposed in this paper holds the potential to significantly improve the quality of acoustic logging array signals.

Funder

National Natural Science Foundation of China

Shanghai Education Development Foundation

Shanghai Municipal Education Commission

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3