Consistency of the inverse scattering imaging condition, the energy norm imaging condition and the impedance kernel in acoustic and elastic reverse-time migration

Author:

Wang Pengfei1,Yang Jidong1,Huang Jianping1,Sun Jiaxing1,Zhao Chong1

Affiliation:

1. National Key Laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum (East China) , Qingdao , P. R. China , 266580

Abstract

Abstract In this work, we draw connections between the imaging conditions using the impedance kernel, the inverse scattering imaging condition, and the energy norm imaging condition in acoustic and elastic reverse-time migration (RTM). Traditional RTM often introduces large low-wavenumber artifacts that degrade image quality in intricate geological structures with large velocity variations. In practice, the Laplacian filter is commonly used to remove these low-wavenumber artifacts, but it changes the image wavenumber spectrum. The advanced imaging conditions of the inverse scattering, the energy norm, and the impedance kernel can effectively remove the low-wavenumber artifacts while not changing the wavenumber spectrum. This study aims to build a connection between these three types of imaging conditions by conducting detailed analysis in the wavenumber domain for acoustic and elastic RTMs. We find that they are exactly the same except for the varying weights of the source-receiver wavefield cross-correlation. All three imaging conditions can generate clear RTM images that are not affected by low-wavenumber artifacts. Numerical examples for a simple model, Sigsbee 2a, and BP models verify the consistency of these three imaging conditions and show their advantage over conventional simple zero-lag cross-correlation imaging conditions. This is important for improving the quality and reliability of seismic imaging technology.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3