Integrative analysis of hexaploid wheat roots identifies signature components during iron starvation

Author:

Kaur Gazaldeep12,Shukla Vishnu13,Kumar Anil12,Kaur Mandeep12,Goel Parul1,Singh Palvinder1,Shukla Anuj1,Meena Varsha1,Kaur Jaspreet3,Singh Jagtar2,Mantri Shrikant1,Rouached Hatem4,Pandey Ajay Kumar1ORCID

Affiliation:

1. National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India

2. Department of Biotechnology, Panjab University, Chandigarh, India

3. University Institute of Engineering and Technology, Panjab University, Chandigarh, India

4. BPMP, Université de Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France

Abstract

AbstractIron (Fe) is an essential micronutrient for all organisms. In crop plants, Fe deficiency can decrease crop yield significantly; however, our current understanding of how major crops respond to Fe deficiency remains limited. Herein, the effect of Fe deprivation at both the transcriptomic and metabolic level in hexaploid wheat was investigated. Genome-wide gene expression reprogramming was observed in wheat roots subjected to Fe starvation, with a total of 5854 genes differentially expressed. Homoeologue and subgenome-specific analysis unveiled the induction-biased contribution from the A and B genomes. In general, the predominance of genes coding for nicotianamine synthase, yellow stripe-like transporters, metal transporters, ABC transporters, and zinc-induced facilitator-like protein was noted. Expression of genes related to the Strategy II mode of Fe uptake was also predominant. Our transcriptomic data were in agreement with the GC-MS analysis that showed the enhanced accumulation of various metabolites such as fumarate, malonate, succinate, and xylofuranose, which could be contributing to Fe mobilization. Interestingly, Fe starvation leads to a significant temporal increase of glutathione S-transferase at both the transcriptional level and enzymatic activity level, which indicates the involvement of glutathione in response to Fe stress in wheat roots. Taken together, our result provides new insight into the wheat response to Fe starvation at the molecular level and lays the foundation to design new strategies for the improvement of Fe nutrition in crops.

Funder

NABI-CORE

DST-SERB

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3