Action potential propagation and block in a model of atrial tissue with myocyte–fibroblast coupling

Author:

Mortensen Peter1,Gao Hao2,Smith Godfrey3,Simitev Radostin D2

Affiliation:

1. School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK

2. School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK

3. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK

Abstract

Abstract The electrical coupling between myocytes and fibroblasts and the spacial distribution of fibroblasts within myocardial tissues are significant factors in triggering and sustaining cardiac arrhythmias, but their roles are poorly understood. This article describes both direct numerical simulations and an asymptotic theory of propagation and block of electrical excitation in a model of atrial tissue with myocyte–fibroblast coupling. In particular, three idealized fibroblast distributions are introduced: uniform distribution, fibroblast barrier and myocyte strait—all believed to be constituent blocks of realistic fibroblast distributions. Primary action potential biomarkers including conduction velocity, peak potential and triangulation index are estimated from direct simulations in all cases. Propagation block is found to occur at certain critical values of the parameters defining each idealized fibroblast distribution, and these critical values are accurately determined. An asymptotic theory proposed earlier is extended and applied to the case of a uniform fibroblast distribution. Biomarker values are obtained from hybrid analytical-numerical solutions of coupled fast-time and slow-time periodic boundary value problems and compare well to direct numerical simulations. The boundary of absolute refractoriness is determined solely by the fast-time problem and is found to depend on the values of the myocyte potential and on the slow inactivation variable of the sodium current ahead of the propagating pulse. In turn, these quantities are estimated from the slow-time problem using a regular perturbation expansion to find the steady state of the coupled myocyte–fibroblast kinetics. The asymptotic theory gives a simple analytical expression that captures with remarkable accuracy the block of propagation in the presence of fibroblasts.

Funder

UK Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Pharmacology,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine,General Neuroscience

Reference56 articles.

1. Overview of basic mechanisms of cardiac arrhythmia;Antzelevitch;Card. Electrophysiol. Clin.,2011

2. Arrhythmogenic potential of border zone after myocardial infarction;Arbustini;JACC Cardiovasc. Imaging,2018

3. Dissipation of the excitation wave fronts;Biktashev;Phys. Rev. Lett.,2002

4. Asymptotic analysis and analytical solutions of a model of cardiac excitation;Biktashev;Bull. Math. Biol.,2008

5. Asymptotic properties of mathematical models of excitability;Biktasheva;Philos. Trans. A Math. Phys. Eng. Sci.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3