R-estimators in GARCH models: asymptotics and applications

Author:

Liu Hang1,Mukherjee Kanchan2ORCID

Affiliation:

1. International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, China

2. Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK

Abstract

Summary The quasi-maximum likelihood estimation is a commonly-used method for estimating the generalized autoregressive conditional heteroscedastic parameters. However, such estimators are sensitive to outliers and their asymptotic normality is proved under the finite fourth moment assumption on the underlying error distribution. In this paper, we propose a novel class of estimators of the generalized autoregressive conditional heteroscedastic parameters based on ranks of the residuals, called R-estimators, with the property that they are asymptotically normal under the existence of a finite $2+\delta$ moment of the errors and are highly efficient. We propose a fast algorithm for computing the R-estimators. Both real data analysis and simulations show the superior performance of the proposed estimators under the heavy-tailed and asymmetric distributions.

Funder

Economic and Social Research Council

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference28 articles.

1. Rank-based estimation for GARCH processes;Andrews;Econometric Theory,2012

2. The multivariate skew-normal distribution;Azzalini;Biometrika,1996

3. A note on quantiles in large samples;Bahadur;Annals of Mathematical Statistics,1966

4. GARCH processes: structure and estimation;Berkes;Bernoulli,2003

5. The efficiency of the estimators of the parameters in GARCH processes;Berkes;Annals of Statistics,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3