Re enhances anthocyanin and proanthocyanidin accumulation to produce red foliated cotton and brown fiber

Author:

Wang Nian1,Zhang Beibei1,Yao Tian1,Shen Chao12ORCID,Wen Tianwang13ORCID,Zhang Ruiting1,Li Yuanxue1ORCID,Le Yu1,Li Zhonghua1,Zhang Xianlong1ORCID,Lin Zhongxu1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University , Wuhan 430070, China

2. College of Biological and Food Engineering, Guangdong University of Petrochemical Technology , Maoming, Guangdong 525000, China

3. Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University , Nanchang, Jiangxi 330045, China

Abstract

Abstract Red foliated cotton is a typical dominant mutation trait in upland cotton (Gossypium hirsutum). Although mutants have been described, few responsible genes have been identified and characterized. In this study, we performed map-based cloning of the red foliated mutant gene (Re) derived from the cross between G. hirsutum cv. Emian22 and G. barbadense acc. 3–79. Through expression profiling, metabolic pathway analysis, and sequencing of candidate genes, Re was identified as an MYB113 transcription factor. A repeat sequence variation in the promoter region increased the activity of the promoter, which enhanced the expression of Re. Re expression driven by the 35S promoter produced a red foliated phenotype, as expected. When the gene was driven by a fiber elongation-specific promoter, promoter of α-expansin 2 (PGbEXPA2), Re was specifically expressed in 5- to 10-day post-anthesis fibers rather than in other tissues, resulting in brown mature fibers. Re responded to light through phytochrome-interacting factor 4 and formed a dimer with transparent testa 8, which increased its expression as well as that of anthocyanin synthase and UDP-glucose:flavonoid 3-o-glucosyl transferase, and thus activated the entire anthocyanin metabolism pathway. Our research has identified the red foliated mutant gene in cotton, which paves the way for detailed studies of anthocyanin and proanthocyanidin metabolism and pigment accumulation in cotton and provides an alternative strategy for producing brown fiber.

Funder

Genetically Modified Organisms Breeding Major Project of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3