Gene co-expression reveals the modularity and integration of C4 and CAM in Portulaca

Author:

Gilman Ian S1ORCID,Moreno-Villena Jose J1ORCID,Lewis Zachary R1ORCID,Goolsby Eric W2ORCID,Edwards Erika J1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, Yale University , New Haven, Connecticut, USA

2. Department of Biology, University of Central Florida , Orlando, Florida, USA

Abstract

Abstract C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day–night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference110 articles.

1. Contemporaneous and recent radiations of the world’s major succulent plant lineages;Arakaki;Proc Nat Acad Sci USA,2011

2. MEME Suite: tools for motif discovery and searching;Bailey;Nucleic Acids Res,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3