Affiliation:
1. Department of Molecular Genetics and Cell Biology, The University of Chicago , Chicago, Illinois 60637, USA
Abstract
Abstract
Plant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members. HyPRPs have a transmembrane domain, a proline-rich region (PRR), and a lipid transfer protein domain. The precise subcellular location(s) and function(s) are unknown for most HyPRP family members. As predicted by informatics, a subset of HyPRPs has a pool of proteins that target plastid outer envelope membranes via a mechanism that requires the PRR. Additionally, two HyPRPs may be associated with thylakoid membranes. Most of the plastid- and nonplastid-localized family members also have pools that localize to the endoplasmic reticulum, plasma membrane, or plasmodesmata. HyPRPs with plastid pools regulate, positively or negatively, systemic immunity against the pathogen Pseudomonas syringae. HyPRPs also regulate the interaction with the plant growth-promoting rhizobacteria Pseudomonas simiae WCS417 in the roots to influence colonization, root system architecture, and/or biomass. Thus, HyPRPs have broad and distinct roles in immunity, development, and growth responses to microbes and reside at sites that may facilitate signal molecule transport.
Funder
National Science Foundation
France Chicago Center
Science and Engineering Research Board (SERB)/Indo-US Science and Technology Forum
National Institutes of Health (NIH) Training Grant T32
Howard Hughes Medical Institute (HHMI) Gilliam and Ford Foundation fellowships
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献