The white lupin trehalase gene LaTRE1 regulates cluster root formation and function under phosphorus deficiency

Author:

Xia Tianyu1ORCID,Zhu Xiaoqi1,Zhan Yujie1,Liu Bowen1,Zhou Xiangxue1ORCID,Zhang Qian1ORCID,Xu Weifeng1ORCID

Affiliation:

1. Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University , Jinshan Fuzhou 350002 , China

Abstract

Abstract Under phosphorus (P) deficiency, white lupin (Lupinus albus L.) forms a specialized root structure, called cluster root (CR), to improve soil exploration and nutrient acquisition. Sugar signaling is thought to play a vital role in the development of CR. Trehalose and its associated metabolites are the essential sugar signal molecules that link growth and development to carbon metabolism in plants; however, their roles in the control of CR are still unclear. Here, we investigated the function of the trehalose metabolism pathway by pharmacological and genetic manipulation of the activity of trehalase in white lupin, the only enzyme that degrades trehalose into glucose. Under P deficiency, validamycin A treatment, which inhibits trehalase, led to the accumulation of trehalose and promoted the formation of CR with enhanced organic acid production, whereas overexpression of the white lupin TREHALASE1 (LaTRE1) led to decreased trehalose levels, lateral rootlet density, and organic acid production. Transcriptomic and virus-induced gene silencing results revealed that LaTRE1 negatively regulates the formation of CRs, at least partially, by the suppression of LaLBD16, whose putative ortholog in Arabidopsis (Arabidopsis thaliana) acts downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Overall, our findings provide an association between the trehalose metabolism gene LaTRE1 and CR formation and function with respect to organic acid production in white lupin under P deficiency.

Funder

Natural Science Foundation of Fujian Province

Fujian Provincial Key Laboratory of Plant Functional Biology

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3