Phosphorylated B6 vitamer deficiency in SALT OVERLY SENSITIVE 4 mutants compromises shoot and root development

Author:

Gorelova Vera1,Colinas Maite1ORCID,Dell’Aglio Elisa1,Flis Paulina2ORCID,Salt David E2ORCID,Fitzpatrick Teresa B1ORCID

Affiliation:

1. Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland

2. Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK

Abstract

Abstract Stunted growth in saline conditions is a signature phenotype of the Arabidopsis SALT OVERLY SENSITIVE mutants (sos1-5) affected in pathways regulating the salt stress response. One of the mutants isolated, sos4, encodes a kinase that phosphorylates pyridoxal (PL), a B6 vitamer, forming the important coenzyme pyridoxal 5′-phosphate (PLP). Here, we show that sos4-1 and more recently isolated alleles are deficient in phosphorylated B6 vitamers including PLP. This deficit is concomitant with a lowered PL level. Ionomic profiling of plants under standard laboratory conditions (without salt stress) reveals that sos4 mutants are perturbed in mineral nutrient homeostasis, with a hyperaccumulation of transition metal micronutrients particularly in the root, accounting for stress sensitivity. This is coincident with the accumulation of reactive oxygen species, as well as enhanced lignification and suberization of the endodermis, although the Casparian strip is intact and functional. Further, micrografting shows that SOS4 activity in the shoot is necessary for proper root development. Growth under very low light alleviates the impairments, including salt sensitivity, suggesting that SOS4 is important for developmental processes under moderate light intensities. Our study provides a basis for the integration of SOS4 derived B6 vitamers into plant health and fitness.

Funder

Swiss National Science Foundation

University of Geneva

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3