CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean

Author:

Li Xiao1ORCID,Hu Dezhou1ORCID,Cai Linyan1ORCID,Wang Huiqi1ORCID,Liu Xinyu1ORCID,Du Haiping2ORCID,Yang Zhongyi1ORCID,Zhang Huairen1ORCID,Hu Zhenbin3ORCID,Huang Fang1ORCID,Kan Guizhen1ORCID,Kong Fanjiang2ORCID,Liu Baohui2ORCID,Yu Deyue1ORCID,Wang Hui1ORCID

Affiliation:

1. National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University , Nanjing 210095, China

2. School of Life Sciences, Guangzhou University , Guangzhou 510006, China

3. Department of Biology, Saint Louis University , St. Louis, Missouri 63103, USA

Abstract

Abstract Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Horizon 2020 of European Union

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3