Causes and consequences of endogenous hypoxia on growth and metabolism of developing maize kernels

Author:

Langer Matthias1ORCID,Hilo Alexander1ORCID,Guan Jiahn-Chou2ORCID,Koch Karen E2ORCID,Xiao Hui3ORCID,Verboven Pieter3ORCID,Gündel Andre1ORCID,Wagner Steffen1ORCID,Ortleb Stefan1ORCID,Radchuk Volodymyr1ORCID,Mayer Simon1ORCID,Nicolai Bart3ORCID,Borisjuk Ljudmilla1ORCID,Rolletschek Hardy1ORCID

Affiliation:

1. Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse , 06466 Seeland-Gatersleben , Germany

2. University of Florida, Horticultural Sciences Department , Fifield Hall, 2550 Hull Rd., PO Box 110690, Gainesville, Florida, 32611 , USA

3. Biosystems Department, KU Leuven—University of Leuven, BIOSYST-MeBioS , Willem de Croylaan 42, B-3001 Leuven , Belgium

Abstract

Abstract Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.

Funder

Deutsche Forschungsgemeinschaft

Research Council of the KU Leuven

Research Foundation Flanders

National Science Foundation

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3