Directing cyanobacterial photosynthesis in a cytochrome c oxidase mutant using a heterologous electron sink

Author:

Torrado Alejandro1ORCID,Connabeer Hannah M1ORCID,Röttig Annika1ORCID,Pratt Nicola1ORCID,Baylay Alison J1ORCID,Terry Matthew J23ORCID,Moore C Mark13ORCID,Bibby Thomas S13ORCID

Affiliation:

1. Ocean and Earth Science, National Oceanography Centre, University of Southampton , Southampton SO14 3ZH, UK

2. School of Biological Sciences, University of Southampton , Southampton SO17 1BJ, UK

3. Institute for Life Sciences, University of Southampton , Southampton SO17 1BJ, UK

Abstract

Abstract Photosynthesis holds the promise of sustainable generation of useful products using light energy. Key to realizing this potential is the ability to rationally design photosynthesis to redirect energy and reductant derived from photons to desired products. Cytochrome P450s (P450s), which catalyze a broad array of reactions, have been engineered into a variety of photosynthetic organisms, where their activity has been shown to be photosynthesis-dependent, thus acting as heterologous sinks of electrons derived from photosynthesis. Furthermore, the addition of P450s can increase the photosynthetic capacity of the host organism. In this study, we developed this technology further using a P450 (CYP1A1) expressed in the cyanobacterium Synechococcus sp. PCC 7002. We show that rationally engineering photosynthesis by the removal of a competing electron sink, the respiratory terminal oxidase cytochrome c oxidase, increased the activity of CYP1A1. We provide evidence that this enhanced CYP1A1 activity was facilitated via an increase in the flux of electrons through Photosystem I. We also conducted a transcriptomic analysis on the designed strains to gain a more holistic understanding of how the cell responds to rational engineering. We describe a complex response including changes in expression of genes involved in photosynthesis and electron transfer linked to respiration. Specifically, the expression of CYP1A1 resulted in the reduction in expression of other natural electron dissipation pathways. This study emphasizes the potential for engineering photosynthetic organisms in biotechnology but also highlights the need to consider the broader impacts on cellular metabolism of any rationally induced changes.

Funder

UK Biotechnology and Biological Sciences Research Council

BBSRC

Tapping the Unused Potential of Photosynthesis

UK Natural Environment Research Council

SPITFIRE Doctoral Training Partnerships

National Oceanography Centre Southampton Graduate School

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3