Transcription factorsNtHD9andNtHD12control long glandular trichome formation via jasmonate signaling

Author:

Zhang Hongying1ORCID,Xu Hanchi1ORCID,Xu Mengxiao1ORCID,Yan Xiaoxiao1ORCID,Wang Zhaojun1ORCID,Yu Jing2ORCID,Lei Bo2ORCID,Cui Hong1ORCID

Affiliation:

1. Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University , Zhengzhou 450002 , China

2. Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science , Guiyang 550081 , China

Abstract

AbstractGlandular trichomes are universal epidermal structures that produce abundant specialized metabolites. However, knowledge of the initiation of glandular heads in glandular trichomes is limited. Herein, we found an intrinsic link of morphogenesis between glandular trichomes and non-glandular trichomes. Two novel homeodomain leucine zipper II members in tobacco (Nicotiana tabacum), NtHD9 and NtHD12, played important roles in long glandular trichome formation: NtHD9 was responsible for glandular head formation, while NtHD12 simultaneously controlled the formation of stalks and glandular heads. DAP-seq analysis suggested that NtHD9 can bind to the KKGCATTWAWTR motif of the cytochromes P450 94C1 (NtCYP94C1) promoter, which is involved in jasmonoyl-isoleucine oxidation. RNA-seq analysis of non-transformed tobacco and nthd9 plants revealed that NtHD9 modulates the expression of jasmonate (JA) signaling- and six trichome development-related genes. Notably, MeJA treatment restored the morphogenesis of long glandular trichomes in nthd9 and nthd12 plants, and the size of glandular heads increased with increasing MeJA concentration. However, the phenotype of long glandular trichome absence in double mutants of NtHD9 and NtHD12 could not be restored by MeJA. Our data demonstrate that NtHD9 and NtHD12 have distinct major functions yet overlapping roles in long glandular trichome formation via JA signaling.

Funder

State Tobacco Monopoly Administration of China

Natural Science Foundation of Henan province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3