Immune cell type and DNA methylation vary with reproductive status in women: possible pathways for costs of reproduction

Author:

Ryan Calen P1,Jones Meaghan J23,Edgar Rachel D4,Lee Nanette R5,Kobor Michael S67ORCID,McDade Thomas W178,Kuzawa Christopher W18

Affiliation:

1. Department of Anthropology, Northwestern University, Evanston, IL 60208, USA

2. Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada

3. Children’s Hospital Research Institute, University of Manitoba, Winnipeg, MB R3E 0J9, Canada

4. EMBL-EBI, Wellcome Genome Campus, Hinxton CB10 1SD, UK

5. University of San Carlos Office of Population Studies Foundation Inc., Cebu City 6000, Philippines

6. BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada

7. Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada

8. Institute for Policy Research, Northwestern University, Evanston, IL 60208, USA

Abstract

Abstract Background Consistent with evolutionarily theorized costs of reproduction (CoR), reproductive history in women is associated with life expectancy and susceptibility to certain cancers, autoimmune disorders and metabolic disease. Immunological changes originating during reproduction may help explain some of these relationships. Methodology To explore the potential role of the immune system in female CoR, we characterized leukocyte composition and regulatory processes using DNA methylation (DNAm) in a cross-sectional cohort of young (20–22 years old) women differing in reproductive status. Results Compared to nulliparity, pregnancy was characterized by differential methylation at 828 sites, 96% of which were hypomethylated and enriched for genes associated with T-cell activation, innate immunity, pre-eclampsia and neoplasia. Breastfeeding was associated with differential methylation at 1107 sites (71% hypermethylated), enriched for genes involved in metabolism, immune self-recognition and neurogenesis. There were no significant differences in DNAm between nulliparous and parous women. However, compared to nullipara, pregnant women had lower proportions of B, CD4T, CD8T and natural killer (NK) cells, and higher proportions of granulocytes and monocytes. Monocyte counts were lower and NK counts higher among breastfeeding women, and remained so among parous women. Implications Our findings point to widespread differences in DNAm during pregnancy and lactation. These effects appear largely transient, but may accumulate with gravidity become detectable as women age. Nulliparous and parous women differed in leukocyte composition, consistent with more persistent effects of reproduction on cell type. These findings support transient (leukocyte DNAm) and persistent (cell composition) changes associated with reproduction in women, illuminating potential pathways contributing to CoR. Lay Summary: Evolutionary theory and epidemiology support costs of reproduction (CoR) to women’s health that may involve changes in immune function. We report differences in immune cell composition and gene regulation during pregnancy and breastfeeding. While many of these differences appear transient, immune cell composition may remain, suggesting mechanisms for female CoR.

Funder

National Science Foundation

National Heart, Lung, and Blood Institute

Canadian Institute for Advanced Research (CIFAR), and the Natural Sciences and Engineering Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Ecology, Evolution, Behavior and Systematics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3