Affiliation:
1. College of Fisheries, Huazhong Agricultural University, Wuhan, China
2. Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
3. Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
Abstract
ABSTRACT
Background
Selenium (Se) status is closely related to skeletal muscle physiological status. However, its influence on skeletal muscle growth has not been well studied.
Objectives
This study aimed to analyze the impacts of overall Se status (deficient, adequate, and high) on skeletal muscle growth using a growing zebrafish model.
Methods
Zebrafish (1.5-mo-old) were fed graded levels of Se (deficient: 0.10 mg Se/kg; marginally deficient: 0.22 mg Se/kg; adequate: 0.34 mg Se/kg; high: 0.44, 0.57, and 0.69 mg Se/kg) as Se-enriched yeast for 30 d. Zebrafish growth, and Se accumulation, selenoenzyme activity, selenotranscriptome profiles, and oxidative status in the whole body, and selenotranscriptome profiles, histological characteristics, biochemicals, and gene and protein expression profiles related to muscle growth in the skeletal muscle were analyzed by model fitting and/or 1-factor ANOVA.
Results
Se status biomarkers within the whole body and skeletal muscle indicated that 0.34 mg Se/kg was adequate for growing zebrafish. For biomarkers related to skeletal muscle growth, compared with 0.34 mg Se/kg, 0.10 mg Se/kg decreased the white muscle cross-sectional area (WMCSA) and the mean diameter of white muscle fibers (MDWMF) by 14.4%–15.1%, inhibited protein kinase B–target of rapamycin complex 1 signaling by 63.7%–68.5%, and stimulated the autophagy–lysosome pathway by 1.07 times and the ubiquitin–proteasome pathway (UPP) by 96.0% (P < 0.05), whereas 0.22 mg Se/kg only decreased the WMCSA by 7.8% (P < 0.05); furthermore, 0.44 mg Se/kg had no clear effects on skeletal muscle biomarkers, whereas 0.57–0.69 mg Se/kg decreased the WMCSA and MDWMF by 6.3%–25.9% and 5.1%–21.3%, respectively, and stimulated the UPP by 2.23 times (P < 0.05).
Conclusions
A level of 0.34 mg Se/kg is adequate for the growth of zebrafish skeletal muscle, whereas ≤0.10 and ≥0.57 mg Se/kg are too low or too high, respectively, for maintaining efficient protein accretion and normal hypertrophic growth.
Funder
Fundamental Research Funds for the Central Universities
HZAU
Publisher
Oxford University Press (OUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)