Rational Links and DT Invariants of Quivers

Author:

Stošić Marko12,Wedrich Paul3

Affiliation:

1. CAMGSD, Departamento de Matemática, Instituto Superior Tecnico, Lisbon, Portugal

2. Mathematical Institute SANU, Beograd, Serbia

3. Mathematical Sciences Institute, The Australian National University, Canberra ACT, Australia

Abstract

Abstract We prove that the generating functions for the colored HOMFLY-PT polynomials of rational links are specializations of the generating functions of the motivic Donaldson–Thomas invariants of appropriate quivers that we naturally associate with these links. This shows that the conjectural links–quivers correspondence of Kucharski–Reineke–Stošić–Sułkowski as well as the LMOV conjecture holds for all rational links. Along the way, we extend the links–quivers correspondence to tangles and, thus, explore elements of a skein theory for motivic Donaldson–Thomas invariants.

Funder

European Research Council

Technological Development of the Republic of Serbia

Leverhulme Trust

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Webs and quantum skew Howe duality;Cautis;Math. Ann.,2014

2. “The integrality conjecture and the cohomology of preprojective stacks;Davison

3. HOMFLY polynomials, stable pairs and motivic Donaldson–Thomas invariants;Diaconescu;Commun. Number Theory Phys.,2012

4. Cohomological Hall algebra of a symmetric quiver;Efimov;Compos. Math.,2012

5. On the signature of a link;Gordon;Invent. Math.,1978

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3d-3d correspondence and 2d $$\mathcal{N}$$ = (0, 2) boundary conditions;Journal of High Energy Physics;2024-03-14

2. 3-Manifolds and VOA Characters;Communications in Mathematical Physics;2024-02

3. Knot-quiver correspondence for double twist knots;Physical Review D;2023-11-30

4. Quiver Diagonalization and Open BPS States;Communications in Mathematical Physics;2023-06-21

5. Branches, quivers, and ideals for knot complements;Journal of Geometry and Physics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3