Crystalline Cohomology of Towers of Curves

Author:

Vonk Jan1ORCID

Affiliation:

1. Department of Mathematics and Statistics Burnside Hall, Sherbrooke Street West Montreal, QC, Canada

Abstract

Abstract We investigate the geometry of finite maps and correspondences between curves, and construct canonical trace and pullback maps between Hyodo–Kato integral structures on de Rham cohomology of curves, which are functorial for finite morphisms of the generic fibres. This leads to a crystalline version of the étale cohomology of towers of modular curves considered by Hida and Ohta, whose ordinary part satisfies $\Lambda $-adic control and Eichler–Shimura theorems.

Funder

Centre International de Mathématiques et Informatique de Toulouse

McGill University

University of Chicago

London Mathematical Society

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. Lifting harmonic morphisms I: Metrized complexes and Berkovich skeleta;Amini;Res. Math. Sci.,2015

2. Semistable sheaves and comparison isomorphisms in the semistable case;Andreatta;Rend. Semin. Mat. Univ. Padova,2012

3. Stable reduction and uniformization of abelian varieties I;Bosch;Math. Ann.,1985

4. F-isocrystals and de Rham cohomology I.;Berthelot;Invent. Math.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3