Chromatic Numbers of Stable Kneser Hypergraphs via Topological Tverberg-Type Theorems

Author:

Frick Florian1

Affiliation:

1. Department of Mathematics, Cornell University, Ithaca, NY, USA

Abstract

Abstract Kneser’s 1955 conjecture—proven by Lovász in 1978—asserts that in any partition of the $k$-subsets of $\{1, 2, \dots , n\}$ into $n-2k+1$ parts, one part contains two disjoint sets. Schrijver showed that one can restrict to significantly fewer $k$-sets and still observe the same intersection pattern. Alon, Frankl, and Lovász proved a different generalization of Kneser’s conjecture for $r$ pairwise disjoint sets. Dolnikov generalized Lovász’ result to arbitrary set systems, while Kříž did the same for the $r$-fold extension of Kneser’s conjecture. Here we prove a common generalization of all of these results. Moreover, we prove additional strengthenings by determining the chromatic number of certain sparse stable Kneser hypergraphs, and further develop a general approach to establishing lower bounds for chromatic numbers of hypergraphs using a combination of methods from equivariant topology and intersection results for convex hulls of points in Euclidean space.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference38 articles.

1. Colorful subhypergraphs in uniform hypergraphs;Alishahi;Electron. J. Comb.,2017

2. On the chromatic number of general Kneser hypergraphs;Alishahi;J. Combin. Theory Ser. B,2015

3. Stable Kneser hypergraphs and ideals in $\mathbb{N}$ with the Nikodym property;Alon;Proc. Amer. Math. Soc.,2009

4. The chromatic number of Kneser hypergraphs;Alon;Trans. Amer. Math. Soc.,1986

5. On a common generalization of Borsuk’s and Radon’s theorem;Bajmóczy;Acta Math. Hungar.,1979

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transversal Generalizations of Hyperplane Equipartitions;International Mathematics Research Notices;2023-09-25

2. Lower bounds for the chromatic number of certain Kneser-type hypergraphs;European Journal of Combinatorics;2023-05

3. A counterexample to a conjecture on the chromatic number of r $r$‐stable Kneser hypergraphs;Journal of Graph Theory;2023-02-26

4. Fair splittings by independent sets in sparse graphs;Israel Journal of Mathematics;2020-02-12

5. On the chromatic number of generalized Kneser hypergraphs;European Journal of Combinatorics;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3