Toward the genetic suppression of Bactrocera dorsalis (Diptera: Tephritidae) through CRISPR/Cas9-mediated editing of spermatogenesis-related genes, Tssk1 and topi for imparting male sterility

Author:

Ashok Karuppannasamy12ORCID,Bhargava Chikmagalur Nagaraja13ORCID,Pradeep Chalapathi13ORCID,Pradhan Sanjay Kumar14ORCID,Jha Girish Kumar5,Maligeppagol Manamohan1ORCID,Shivanna Bynakal3ORCID,Asokan Ramasamy1ORCID

Affiliation:

1. Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research , Bengaluru, Karnataka , India

2. Department of Agricultural Entomology, Tamil Nadu Agricultural University , Coimbatore, Tamil Nadu , India

3. Department of Agricultural Entomology, University of Agricultural Sciences , Bengaluru, Karnataka , India

4. Hawkesbury Institute for the Environment, Western Sydney University , Penrith, New South Wales , Australia

5. Division of Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India

Abstract

Abstract Pest management based on CRISPR/Cas9-mediated site-specific mutations is an effective and environmentally safer strategy to suppress the pest population. However, the potential of this approach is yet to be tested on many important agricultural pests such as Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fit candidate for area-wide pest management. Therefore, in the present study, 2 spermatogenesis-related genes viz. Testis-specific zinc finger protein (topi) and Testis-specific serine protein kinase 1 (Tssk1) of B. dorsalis were edited to impart male sterility and its impact on further progeny. In this regard, topi and Tssk1 mutant populations deposited significantly fewer eggs per day (6.12 ± 0.36 and 3.60 ± 0.24, respectively) as compared to the control (11.16 ± 0.58 eggs per day). About the hatching rate, the above trend was observed, topi (44.51) and Tssk1 (30.04) as compared to the control (73.96). Furthermore, the total number of viable offspring for topi and Tssk1 populations decreased as a result of the cumulative progeny production ten days after the post-mating phase. It suggests that topi and Tssk1 from B. dorsalis could be potential targets for imparting male sterility in B. dorsalis.

Funder

Centre for Agricultural Bioinformatics

Department of Science & Technology, Ministry of Science & Technology, Government of India

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3