A Novel Multi-state Bogie System Reliability Evaluation Approach by Extended d-MC Model for High Speed Train

Author:

Fu Yong1,Liu Ruoqu2,Dai Jisheng1,Zhu Wenlong1,Liu Xin1,Qin Yong3

Affiliation:

1. Zhuzhou CRRC Times Electric Co. , Ltd., Times Road, Shifeng District, Zhuzhou, Hunan, 412001 , China

2. Department of Statistics, University of Warwick , Coventry, CV4 7AL , United Kingdom

3. State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University , Haidian District, Beijing, 100044 , China

Abstract

Abstract Bogie is a pivotal system and plays a critical part in the safety and reliability management of high speed rail. However, the available bogie system reliability analysis methods lack the consideration of multi-state characteristics, and the common multi-state reliability analysis methods, being an NP-hard problem, lead to a low efficiency. In order to overcome the mentioned drawbacks, this paper proposes a novel multi-state rail train bogie system reliability analysis approach based on the extended d-MC model. Three different function interactions within the bogie system are considered to build the multi-state bogie system flow network model. Meanwhile, an extended d-MC model is established to remove unnecessary d-MC candidates and duplicates, which greatly enhances the computing efficiency. The bogie system reliability is calculated, and the examples are provided. Numerical experiments are carried out for the different operational conditions of the bogie system and are used to testify the practicability of the method projected in this article, and is is found that the proposed method outperforms a newly developed method in solving the multi-state reliability problems.

Publisher

Oxford University Press (OUP)

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3