Stress Response to Winter Warfare Training: Potential Impact of Location

Author:

Visconti Lauren M123,Palombo Laura J12,Givens Andrea C12,Turcotte Lorraine P3,Kelly Karen R13ORCID

Affiliation:

1. Warfighter Performance Department, Naval Health Research Center , San Diego, CA 92101, USA

2. Warfighter Performance, Leidos Inc. , San Diego, CA 92121, USA

3. Human and Evolutionary Biology, University of Southern California , Los Angeles, CA 90089, USA

Abstract

ABSTRACT Introduction Winter warfare training (WWT) is a critical component of military training that trains warfighters to operate effectively in extreme environments impacted by snow and mountainous terrain. These environmental factors can exacerbate the disruption to the hormone milieu associated with operating in multi-stressor settings. To date, there is limited research on the physiological responses and adaptations that occur in elite military populations training in arduous environments. The purpose of this study was to quantify hormone responses and adaptations in operators throughout WWT. Materials and Methods Participants engaged in baseline laboratory metrics at their home station, Fort Carson, located in Colorado (CO) prior to WWT, for one week in Montana (MT) and one week in Alaska (AK). WWT periods were separated by approximately one month. Blood was collected upon wake at baseline (CO) and on the first and last day of WWT at each location (MT and AK). Plasma was analyzed for stress, metabolic, and growth-related hormones via enzyme-linked immunoassay (ELISA). Sleep quality was assessed via the Pittsburg Sleep Quality Index (PSQI) at baseline (CO) and on the first day of training in MT and AK. Cognitive function was evaluated using the Defense Automated Neurobehavioral Assessment (DANA) at baseline (CO) and on the first and last day of WWT in both MT and AK. Results Fourteen US Army operators in 10th Special Forces Group (SFG) Operational Detachment participated in winter warfare training (WWT; age: 31.5 years; 95%CI[28.1, 34.3]; height: 180.6 cm; 95%CI[177.3, 183.4]; weight: 87.4 kg.; 95%CI[80.6, 97.7]; body fat: 18.9%; 95%CI[13.7, 23.1]; male: n=13; female: n=1). Plasma adrenocorticotropic hormone (ACTH) levels increased from baseline (19.9 pg/mL; 95%CI[8.6, 24.2])  to pre-WWT (26.9 pg/mL; 95%CI [16.2, 37]; p=0.004), decreased from pre-  (26.9 pg/mL; 95%CI [16.2, 37]) to post-WWT in MT (22.3 pg/mL; 95% CI [8, 23.7]; p=0.004;), and increased from pre-  (25 pg/mL; 95%CI[ 28.4) to post-WWT (36.6 pg/mL; 95%CI [17.9, 48.9]) in AK (p=0.005). Plasma cortisol levels decreased from pre- (174 ng/mL; 95%CI[106.2, 233.6])  to post-WWT (94.5 ng/mL; 95%CI[54.8, 101.7]) in MT (p=0.001) and, conversely, increased from pre- (123.1 ng/mL; 95%CI[97.5, 143.9]) to post-WWT  (162.8 ng/mL; 95%CI[128, 216.7]) in AK (p<0.001). Alterations in growth-related hormones (insulin-like growth factor 1 [IGF-1], insulin-like growth factor binding protein 3 [IGFBP-3],  and sex hormone binding globulin [SHBG]) were observed throughout WWT (p<0.05). The Total Testosterone / Cortisol ratio (TT / CORT; molar ratio) was lower pre-WWT in MT (0.04; 95%CI[0.01,0.04) compared to baseline in CO (0.07; 95%CI[0.04, 0.07]; p=0.042). Triiodothyronine (T3) levels increased from pre-  (101.7 ng/dL; 95%CI[93.7, 110.4]) to post-WWT  (117.8 ng/dL; 95%CI[105.1, 129.4]) in MT (p=0.042). No differences in sleep quality were reported between locations (CO, MT, and AK). Alterations in cognitive function were exhibited between locations and during WWT in both MT and AK (p<0.05). Conclusions Over the course of WWT, elite operators experienced alterations in stress, metabolic, and growth-related hormones, as well as cognitive performance. The increase in stress hormones (i.e., ACTH and cortisol) and reduction in cognitive performance following training in AK are suggestive of heightened physiological strain, despite similarities in physical workload, self-reported sleep quality, and access to nutrition. The variation in hormone levels documented between MT and AK may stem from differences in environmental factors, such as lower temperatures and harsh terrain. Further research is warranted to provide more information on the combined effects of military training in extreme environments on operator health and performance.

Publisher

Oxford University Press (OUP)

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3