Noninvasive Monitoring of Changes in Cerebral Hemodynamics During Prolonged Field Care for Hemorrhagic Shock and Hypoxia-Induced Injuries With Portable Diffuse Optical Sensors

Author:

Izzetoglu Kurtulus1ORCID,Malaeb Shadi N23ORCID,Polat Mert Deniz1ORCID,Sinahon Randolph1ORCID,Shoshany Danielle S1ORCID,Gomero Luis M4ORCID,Shewokis Patricia A15ORCID,Izzetoglu Meltem4ORCID

Affiliation:

1. School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA 19104, USA

2. College of Medicine, Drexel University , Philadelphia, PA 19104, USA

3. Department of Pediatrics, St. Christopher’s Hospital for Children , Philadelphia, PA 19134, USA

4. Department of Electrical and Computer Engineering, Villanova University , Villanova, PA 19085, USA

5. College of Nursing and Health Professions, Drexel University , Philadelphia, PA 19104, USA

Abstract

ABSTRACT Introduction Achieving simultaneous cerebral blood flow (CBF) and oxygenation measures, specifically for point-of-care injury monitoring in prolonged field care, requires the implementation of appropriate methodologies and advanced medical device design, development, and evaluation. The near-infrared spectroscopy (NIRS) method measures the absorbance of light whose attenuation is related to cerebral blood volume and oxygenation. By contrast, diffuse correlation spectroscopy (DCS) allows continuous noninvasive monitoring of microvascular blood flow by directly measuring the degree of light scattering because of red blood cell (RBC) movement in tissue capillaries. Hence, this study utilizes these two optical approaches (DCS–NIRS) to obtain a more complete hemodynamic monitoring by providing cerebral microvascular blood flow, hemoglobin oxygenation and deoxygenation in hemorrhage, and hypoxia-induced injuries. Materials and Methods Piglet models of hemorrhage and hypoxia-induced brain injury were used with DCS and NIRS sensors placed over the preorbital to temporal skull regions. To induce hemorrhagic shock, up to 70% of the animal’s total blood volume was withdrawn through graded hemorrhage serially via a syringe from a femoral artery cannula in 10 mL/kg aliquots over 1 minute every 10 minutes. A second group of animals was subjected to hypoxia for ∼1 hour through graded hypoxia by serial titration from normoxic fraction inspired oxygen of 21% to hypoxic fraction inspired oxygen of 6%. A subset of animals served as sham-controls undergoing anesthesia, instrumentation, and ventilation as the injury groups, yet experiencing no blood loss or hypoxia. Results We first investigated the relationship between hemorrhagic shock and no shock by using measured biomarkers, including blood flow index from DCS associated with CBF and oxygenated (HbO) and de-oxygenated hemoglobin from NIRS. The statistical analysis revealed a significant difference between no shock and hemorrhagic shock (P < .01). The HbO decreased with each blood loss as expected, yet the de-oxygenated hemoglobin was slightly changed. During hypoxia-induced global hypoxic–ischemic injury tests, the CBF results from graded hypoxia were consistent with the response previously measured during hemorrhagic shock. Moreover, HbO decreased when the animal was hypoxic, as expected. A statistical analysis was also conducted to compare the results with those of the sham controls. Conclusions There is a consistency in blood flow measures in both injury mechanisms (hemorrhagic shock and hypoxia), which is significant as the new prototype system provides similar measures and trends for each brain injury type, suggesting that the optical system can be used in response to different injury mechanisms. Notably, the results support the idea that this optical system can probe the hemodynamic status of local cerebral cortical tissue and provide insight into the underlying changes of cerebral tissue perfusion at the microvascular level. These measurement capabilities can improve shock identification and monitoring of medical management of injuries, particularly hemorrhagic shock, in prolonged field care.

Funder

U.S. Army Medical Research Acquisition Activity

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3