Design and Development of a Powered Myoelectric Elbow Orthosis for Neuromuscular Injuries

Author:

Vignola Claudio,Bhat Sandesh G1ORCID,Hollander Kevin2,Kane Paul1,Miller Emily1ORCID,Martin William Brandon2,Shin Alexander Y1ORCID,Sugar Thomas G3ORCID,Kaufman Kenton R13ORCID

Affiliation:

1. Department of Orthopedic Surgery, Mayo Clinic , Rochester, MN 55905, USA

2. Augspurger Komm Engineering, Inc. , Phoenix, AZ 85040, USA

3. Ira A. Fulton Schools of Engineering, Arizona State University , Mesa, AZ 85212, USA

Abstract

ABSTRACT Introduction Recovering from neuromuscular injuries or conditions can be a challenging journey that involves complex surgeries and extensive physical rehabilitation. During this process, individuals often rely on orthotic devices to support and enable movement of the affected limb. However, users have criticized current commercially available powered orthotic devices for their bulky and heavy design. To address these limitations, we developed a novel powered myoelectric elbow orthosis. Materials and Methods The orthosis incorporates 3 mechanisms: a solenoid brake, a Bowden cable-powered constant torque elbow mechanism, and an extension limiter. The device controller and battery are in a backpack to reduce the weight on the affected arm. We performed extensive calculations and testing to ensure that the orthosis could withstand at least 15 Nm of elbow torque. We developed a custom software effectively control the orthosis, enhancing its usability and functionality. A certified orthotist fitted a subject who had undergone a gracilis free functioning muscle transfer surgery with the device. We studied the subject under Mayo clinic IRB no. 20-006849 and obtained objective measurements to assess the orthosis’s impact on upper extremity functionality during daily activities. Results The results are promising since the orthosis significantly improved elbow flexion range of motion by 40° and reduced compensatory movements at the shoulder (humerothoracic joint) by 50°. Additionally, the subject was able to perform tasks which were not possible before, such as carrying a basket with weights, highlighting the enhanced functionality provided by the orthosis. Conclusion In brief, by addressing the limitations of existing devices, this novel powered myoelectric elbow orthosis offers individuals with neuromuscular injuries/conditions improved quality of life. Further research will expand the patient population and control mechanisms.

Funder

Congressionally Directed Medical Research Programs

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3