The Ability of Military Critical Care Air Transport Members to Visually Estimate Percent Systolic Pressure Variation

Author:

Cheney Mark A12ORCID,Smith Maia P3,Burkhardt Joshua N14,Davis William T5,Brown Daniel J6,Horn Christopher7,Hare Jonathan1,Alderman Mark1,Nelson Eric1,Proctor Melissa1,Goodman Michael7,Sams Valerie17,Thiele Robert8,Strilka Richard J17

Affiliation:

1. Center for Sustainment of Trauma and Readiness Skills, University of Cincinnati , Cincinnati, OH 45219, USA

2. Department of Anesthesiology, University of Cincinnati , Cincinnati, OH 45219, USA

3. Air Force Research Laboratory, Wright-Patterson Air Force Base , Dayton, OH 45324, USA

4. Department of Emergency Medicine, University of Cincinnati , Cincinnati, OH 45219, USA

5. United States Air Force En Route Care Research Center, 59th Medical Wing, Science and Technology , Lackland AFB TX 78236, USA

6. Department of Emergency Medicine, Wright State University , Dayton, OH 45324, USA

7. Department of Surgery, University of Cincinnati , Cincinnati, OH 45219, USA

8. Department of Anesthesiology, University of Virginia Health Sciences Center , Charlottesville, VA 22903, USA

Abstract

ABSTRACT Introduction Inappropriate fluid management during patient transport may lead to casualty morbidity. Percent systolic pressure variation (%SPV) is one of several technologies that perform a dynamic assessment of fluid responsiveness (FT-DYN). Trained anesthesia providers can visually estimate and use %SPV to limit the incidence of erroneous volume management decisions to 1-4%. However, the accuracy of visually estimated %SPV by other specialties is unknown. The aim of this article is to determine the accuracy of estimated %SPV and the incidence of erroneous volume management decisions for Critical Care Air Transport (CCAT) team members before and after training to visually estimate and utilize %SPV. Material and Methods In one sitting, CCAT team providers received didactics defining %SPV and indicators of fluid responsiveness and treatment with %SPV ≤7 and ≥14.5 defining a fluid nonresponsive and responsive patient, respectively; they were then shown ten 45-second training arterial waveforms on a simulated Propaq M portable monitor’s screen. Study subjects were asked to visually estimate %SPV for each arterial waveform and queried whether they would treat with a fluid bolus. After each training simulation, they were told the true %SPV. Seven days post-training, the subjects were shown a different set of ten 45-second testing simulations and asked to estimate %SPV and choose to treat, or not. Nonparametric limits of agreement for differences between true and estimated %SPV were analyzed using Bland–Altman graphs. In addition, three errors were defined: (1) %SPV visual estimate errors that would label a volume responsive patient as nonresponsive, or vice versa; (2) incorrect treatment decisions based on estimated %SPV (algorithm application errors); and (3) incorrect treatment decisions based on true %SPV (clinically significant treatment errors). For the training and testing simulations, these error rates were compared between, and within, provider groups. Results Sixty-one physicians (MDs), 64 registered nurses (RNs), and 53 respiratory technicians (RTs) participated in the study. For testing simulations, the incidence and 95% CI for %SPV estimate errors with sufficient magnitude to result in a treatment error were 1.4% (0.5%, 3.2%), 1.6% (0.6%, 3.4%), and 4.1% (2.2%, 6.9%) for MDs, RNs, and RTs, respectively. However, clinically significant treatment errors were statistically more common for all provider types, occurring at a rate of 7%, 10%, and 23% (all P < .05). Finally, students did not show clinically relevant reductions in their errors between training and testing simulations. Conclusions Although most practitioners correctly visually estimated %SPV and all students completed the training in interpreting and applying %SPV, all groups persisted in making clinically significant treatment errors with moderate to high frequency. This suggests that the treatment errors were more often driven by misapplying FT-DYN algorithms rather than by inaccurate visual estimation of %SPV. Furthermore, these errors were not responsive to training, suggesting that a decision-making cognitive aid may improve CCAT teams’ ability to apply FT-DYN technologies.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3