The Advanced Modular Manikin Open Source Platform for Healthcare Simulation

Author:

Hananel David12,Silverglate Dan3,Burke Dan2,Riggs Benjamin4,Norfleet Jack5,Sweet Robert M12

Affiliation:

1. Department of Urology, University of Minnesota, MMC 394, Minneapolis, MN, 55455, USA

2. Department of Surgery, University of Washington, Seattle, WA, 98195, USA

3. Vcom3D, Orlando, FL, 32817, USA

4. Entropic Engineering, MN, 55114, USA

5. U.S. Army Combat Capabilities Development Command - Soldier Center, Medical Simulation Research Branch, Orlando, FL, 32826-3276, USA

Abstract

ABSTRACT Introduction Current thinking in healthcare education stipulates a holistic approach with a focus on patient management, bringing together technical skills, decision-making, and team performance. In parallel, training opportunities with actual patients have diminished, and the number of different interventions to master has increased. Training on simulators has become broadly accepted; however, requirements for such training devices have outpaced the development of new simulators. The Department of Defense (DoD) targeted this gap with a development challenge. This article introduces the Advanced Modular Manikin (AMM) platform and describes the path followed to address the challenge. Materials and Methods Under Contract # W81XWH-14-C-0101, our interdisciplinary team of healthcare providers, educators, engineers, and scientists, together with partners in industry and the government collaborated to establish a set of comprehensive requirements and develop an overarching system architecture and specifications to meet healthcare simulation needs. In order to instantiate the architecture and investigate usability of the platform, a demonstration modular manikin was created that incorporated physical and digital peripherals. Results The system architecture and corresponding data models have been completed and published as open source. A developer’s tool kit has been created, including instructional materials and required hardware and software for interested parties to develop AMM-compatible modules. A reference manikin was created based on the platform specifications and successfully supported a usability study that was performed by the American College of Surgeons, Education Division at the Naval Medical Center San Diego. Conclusions The formal release of a functional modular, interoperable open-source healthcare simulation platform is complete. Next steps involve a strategy for maintaining the open standards and verification of AMM-compatibility for modules. Increasing awareness of this powerful tool and prioritization of module-development to address the wide range of healthcare education needs could lead to a renaissance in military and civilian healthcare simulation-based training.

Funder

Department of Defense

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3