Repetitive Low-level Blast Exposure and Neurocognitive Effects in Army Ranger Mortarmen

Author:

Woodall Julia l.a1ORCID,Sak Jordyn a1,Cowdrick Kyle R1ORCID,Bove Muñoz Brady m1,McElrath Jessica h1,Trimpe Grace r1,Mei Yajun2,Myhre Remington l3,Rains James k1,Hutchinson Charles r3

Affiliation:

1. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

2. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

3. 75th Ranger Regiment, Fort Benning, GA 31905, USA

Abstract

ABSTRACT Introduction Occupational exposure to repetitive, low-level blasts in military training and combat has been tied to subconcussive injury and poor health outcomes for service members. Most low-level blast studies to date have focused on explosive breaching and firing heavy weapon systems; however, there is limited research on the repetitive blast exposure and physiological effects that mortarmen experience when firing mortar weapon systems. Motivated by anecdotal symptoms of mortarmen, the purpose of this paper is to characterize this exposure and its resulting neurocognitive effects in order to provide preliminary findings and actionable recommendations to safeguard the health of mortarmen. Materials and Methods In collaboration with the U.S. Army Rangers at Fort Benning, blast exposure, symptoms, and pupillary light reflex were measured during 3 days of firing 81 mm and 120 mm mortars in training. Blast exposure analysis included the examination of the blast overpressure (BOP) and cumulative exposure by mortarman position, as well as comparison to the 4 psi safety threshold. Pupillary light reflex responses were analyzed with linear mixed effects modeling. All neurocognitive results were compared between mortarmen (n = 11) and controls (n = 4) and cross-compared with blast exposure and blast history. Results Nearly 500 rounds were fired during the study, resulting in a high cumulative blast exposure for all mortarmen. While two mortarmen had average BOPs exceeding the 4 psi safety limit (Fig. 2), there was a high prevalence of mTBI-like symptoms among all mortarmen, with over 70% experiencing headaches, ringing in the ears, forgetfulness/poor memory, and taking longer to think during the training week (n ≥ 8/11). Mortarmen also had smaller and slower pupillary light reflex responses relative to controls, with significantly slower dilation velocity (P < 0.05) and constriction velocity (P < 0.10). Conclusion Mortarmen experienced high cumulative blast exposure coinciding with altered neurocognition that is suggestive of blast-related subconcussive injury. These neurocognitive effects occurred even in mortarmen with average BOP below the 4 psi safety threshold. While this study was limited by a small sample size, its results demonstrate a concerning health risk for mortarmen that requires additional study and immediate action. Behavioral changes like ducking and standing farther from the mortar when firing can generally help reduce mortarmen BOP exposure, but we recommend the establishment of daily cumulative safety thresholds and daily firing limits in training to reduce cumulative blast exposure, and ultimately, improve mortarmen’s quality of life and longevity in service.

Funder

Georgia Tech Capstone Design program and the National Security Innovation Network

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference39 articles.

1. Traumatic brain injury following military deployment: evaluation of diagnosis and cause of injury;Regasa;J Head Trauma Rehabil,2019

2. The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms;Courtney;Front Neurol,2015

3. The neurological effects of repeated exposure to military occupational blast: implications for prevention and health;Engel,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3