Stability of fixed points in an approximate solution of the spring-mass running model

Author:

Wróblewska Zofia1,Kowalczyk Piotr1,Płociniczak Łukasz1

Affiliation:

1. Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

Abstract We consider a classical spring-mass model of human running which is built upon an inverted elastic pendulum. Based on previous results concerning asymptotic solutions for large spring constant (or small angle of attack), we introduce an analytical approximation of a reduced mapping. Although approximate solutions already exist in the literature, our results have some benefits over them. They give us an advantage of being able to explicitly control the error of the approximation in terms of the small parameter, which has a physical meaning—the inverse of the square-root of the spring constant. Our approximation also shows how the solutions are asymptotically related to the magnitude of attack angle $\alpha $. The model itself consists of two sets of differential equations—one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). By appropriately concatenating asymptotic solutions for the two phases we are able to reduce the dynamics to a one-dimensional apex to apex return map. We find sufficient conditions for this map to have a unique stable fixed point. By numerical continuation of fixed points with respect to energy, we find a transcritical bifurcation in our model system.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Reference37 articles.

1. Optimizing running a race on a curved track;Aftalion;PloS one,2019

2. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems;Aguilar;Rep. Progr. Phys.,2016

3. The effect of speed on leg stiffness and joint kinetics in human running;Arampatzis;J. Biomech.,1999

4. Biomechanical parameters of running technique in the distance of sprinter finalists of the world championship;Balandin;Theory and Methods of Sports,2022

5. Animal Locomotion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3