Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach

Author:

Wang Qi12,Cao Ke1,Cheng Lailiang3,Li Yong1,Guo Jian1,Yang Xuanwen1,Wang Jiao1,Khan Irshad Ahmad1,Zhu Gengrui1,Fang Weichao1,Chen Changwen1,Wang Xinwei1,Wu Jinlong1,Xu Qiang2,Wang Lirong1

Affiliation:

1. Chinese Academy of Agricultural Sciences Zhengzhou Fruit Research Institute, , Zhengzhou 450009, China

2. Huazhong Agricultural University College of Horticulture & Forestry Sciences, , Wuhan, China

3. Cornell University Horticulture Section, School of Integrative Plant Science, , Ithaca, NY 14853, USA

Abstract

Abstract Organic acid content in fruit is an important determinant of peach organoleptic quality, and undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis was applied to identify candidate genes involved in organic acid accumulation in peach. A key gene, PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon that leads to a single amino acid substitution (Q528H) was associated with a low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interacted with PpTST1 in a yeast two-hybrid assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3