Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models

Author:

Huang Li12,Zhang Li3,Chen Xing34ORCID

Affiliation:

1. Academy of Arts and Design, Tsinghua University , Beijing, 10084, China

2. The Future Laboratory, Tsinghua University , Beijing, 10084, China

3. School of Information and Control Engineering, China University of Mining and Technology , Xuzhou, 221116, China

4. Artificial Intelligence Research Institute, China University of Mining and Technology , Xuzhou, 221116, China

Abstract

AbstractSince the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3