Predicting the binding of small molecules to nuclear receptors using machine learning

Author:

Ramaprasad Azhagiya Singam Ettayapuram1,Smith Martyn T2,McCoy David2,Hubbard Alan E2,La Merrill Michele A3,Durkin Kathleen A1ORCID

Affiliation:

1. Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA 94720, USA

2. Divisions of Environmental Health Sciences and Biostatistics, School of Public Health, University of California Berkeley, CA 94720, USA

3. Department of Environmental Toxicology, University of California, Davis, CA 95616, USA

Abstract

Abstract Nuclear receptors (NRs) are important biological targets of endocrine-disrupting chemicals (EDCs). Identifying chemicals that can act as EDCs and modulate the function of NRs is difficult because of the time and cost of in vitro and in vivo screening to determine the potential hazards of the 100 000s of chemicals that humans are exposed to. Hence, there is a need for computational approaches to prioritize chemicals for biological testing. Machine learning (ML) techniques are alternative methods that can quickly screen millions of chemicals and identify those that may be an EDC. Computational models of chemical binding to multiple NRs have begun to emerge. Recently, a Nuclear Receptor Activity (NuRA) dataset, describing experimentally derived small-molecule activity against various NRs has been created. We have used the NuRA dataset to develop an ensemble of ML-based models to predict the agonism, antagonism, binding and effector binding of small molecules to nine different human NRs. We defined the applicability domain of the ML models as a measure of Tanimoto similarity to the molecules in the training set, which enhanced the performance of the developed classifiers. We further developed a user-friendly web server named ‘NR-ToxPred’ to predict the binding of chemicals to the nine NRs using the best-performing models for each receptor. This web server is freely accessible at http://nr-toxpred.cchem.berkeley.edu. Users can upload individual chemicals using Simplified Molecular-Input Line-Entry System, CAS numbers or sketch the molecule in the provided space to predict the compound’s activity against the different NRs and predict the binding mode for each.

Funder

Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency

USDA National Institute of Food and Agriculture, Hatch project

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3