A modified specific barrier model based on new time functions and approach for cracks location on the fault plane: application to the 2008 Iwate–Miyagi earthquake

Author:

Rezaei Mohammad Hadi1,Khaji Naser2,Di Maio Rosa3,Emolo Antonio4

Affiliation:

1. Faculty of Civil and Environmental Engineering, Tarbiat Modares University, PO Box 14115-397, Tehran 14779-18118, Iran

2. Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

3. Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Edificio L3, via Cintia 21, 80126 Naples, Italy

4. Dipartimento di Fisica ‘Ettore Pancini’, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Edificio 6, via Cintia 21, 80126 Naples, Italy

Abstract

SUMMARY Specific barrier method (SBM) is a method used for ground motion generation from a finite fault surface. It is based on a regular distribution of rupturing circular subevents located on the fault plane and random arrival times of the waves generated by those cracks. This approach does not consider the whole rupture kinematics, that is the rupture propagation from the hypocentre to the subevents, and leaves parts of the fault unbroken (barriers). In this paper, we propose a modified version of the SBM for generation of synthetic ground motions from a fault surface. In this version, we modify the probability density function (PDF) for the arrival time of the waves coming from different parts of the fault in order to better account for the fault kinematics and the distance between fault point and receiver. In this way, we can simulate the middle part of the acceleration spectrum (i.e. between 0.1 and 7 Hz) with more accuracy. Moreover, a new arrangement for locating cracks throughout the fault plane is proposed to add flexibility to the model and enable it to make the part of the spectrum with frequency larger than 7 Hz more like what happens in nature. In such an arrangement, called geometry packing in this paper, the size of circles varies within a chosen specific allowable range, while the circles cover all over the fault plane without any overlaps. To validate the proposed modified SBM technique, the synthetic Fourier spectra are compared with recordings of the 2008 Mw6.9 Iwate–Miyagi (Japan) earthquake. Finally, we present some parametric studies to show how different features of the proposed PDFs affect the results from the SBM approach.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3