The interplay of fast waves and slow convection in geodynamo simulations nearing Earth’s core conditions

Author:

Aubert Julien1ORCID,Gillet Nicolas2

Affiliation:

1. Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France

2. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, 38000 Grenoble, France

Abstract

SUMMARY Ground observatory and satellite-based determinations of temporal variations in the geomagnetic field probe a decadal to annual timescale range where Earth’s core slow, inertialess convective motions and rapidly propagating, inertia-bearing hydromagnetic waves are in interplay. Here we numerically model and jointly investigate these two important features with the help of a geodynamo simulation that (to date) is the closest to the dynamical regime of Earth’s core. This model also considerably enlarges the scope of a previous asymptotic scaling analysis, which in turn strengthens the relevance of the approach to describe Earth’s core dynamics. Three classes of hydrodynamic and hydromagnetic waves are identified in the model output, all with propagation velocity largely exceeding that of convective advection: axisymmetric, geostrophic Alfvén torsional waves, and non-axisymmetric, quasi-geostrophic Alfvén and Rossby waves. The contribution of these waves to the geomagnetic acceleration amounts to an enrichment and flattening of its energy density spectral profile at decadal timescales, thereby providing a constraint on the extent of the $f^{-4}$ range observed in the geomagnetic frequency power spectrum. As the model approaches Earth’s core conditions, this spectral broadening arises because the decreasing inertia allows for waves at increasing frequencies. Through non-linear energy transfers with convection underlain by Lorentz stresses, these waves also extract an increasing amount of energy from the underlying convection as their key timescale decreases towards a realistic value. The flow and magnetic acceleration energies carried by waves both linearly increase with the ratio of the magnetic diffusion timescale to the Alfvén timescale, highlighting the dominance of Alfvén waves in the signal and the stabilizing control of magnetic dissipation at non-axisymmetric scales. Extrapolation of the results to Earth’s core conditions supports the detectability of Alfvén waves in geomagnetic observations, either as axisymmetric torsional oscillations or through the geomagnetic jerks caused by non-axisymmetric waves. In contrast, Rossby waves appear to be too fast and carry too little magnetic energy to be detectable in geomagnetic acceleration signals of limited spatio-temporal resolution.

Funder

Fondation Simone et Cino Del Duca

Institut de France

ESA

Centre National d’Etudes Spatiales

GENCI

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3