Stability analysis-based reformulation of wave equations for poro-elastic media saturated with two fluids

Author:

Xiong Fansheng1,Liu Jiawei234,Guo Zhenwei234,Liu Jianxin234

Affiliation:

1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, China

3. School of Geosciences and Info-physics, Central South University, Changsha 410083, China

4. Hunan Key Laboratory of Nonferrous Resources and Geological Hazard Exploration, Changsha 410083, China

Abstract

SUMMARY The stability of partial differential equations determines the properties of their solutions. This study focuses on the stability analysis of the equations describing wave propagation in fluids-saturated porous media. We briefly introduce the stability analysis method for the wave propagation equations and discuss the adverse effects on the solutions. In this way, the first part of this paper is mainly devoted to the analysis of the Tuncay and Corapcioglu's (TC) model, which describes the dynamic behaviour of porous media saturated with two immiscible fluids. It is pointed out that the TC model allows spatially bounded but time-exponentially exploding solutions and may yield unstable numerical results. Based on the deduced unstable factors, we construct a stable equivalent fluid (SEF) model. We rigorously analyse the stability of the SEF model using the energy method. For predicting the influence of saturation on wave velocity, the robustness of this model is preserved due to its consistency with the original TC model. Furthermore, the numerical simulations of the wavefields show that the results of the TC model exponentially increase with time after the initial effective wave signal, which does not occur in the SEF model curves. This indicates the necessity of considering the stability from a mathematical point of view during the construction of physical model. It could be useful to merge the mathematical stability theory with the geophysical wave propagation modelling theory.

Funder

Natural Science Foundation of China

Central South University

Ministry of Education and Science

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3