Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function

Author:

Xiao Xiao1ORCID,Cheng Shihua1,Wu Jianping2,Wang Weilai2,Sun Li3,Wang Xiaoxin13,Wen Lianxing4

Affiliation:

1. Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

2. Institute of Geophysics, China Earthquake Administration, Beijing, China

3. China Earthquake Networks Center, China Earthquake Administration, Beijing, China

4. Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA

Abstract

SUMMARY We construct a high-resolution shallow 3-D seismic model in the top 10 km of the upper crust in the continental China, with constraints of P polarization, Rayleigh wave ellipticity and receiver function obtained from records of 3848 seismic stations. Our 3-D seismic model has a spatial resolution of 0.6–1.2° in the north–south seismic belt and the trans-north China orogen, and 1–2° in the rest of the continental China (except the Tarim basin and the southwest Tibet). The seismic model exhibits low velocity anomalies of deposits in major sedimentary basins and high velocity anomalies of crustal bedrocks in young orogenic belts and old tectonic blocks. The inferred sediment thickness maps display thick deposits in major sedimentary basins, some compacted sediments in the intermontane basins in young orogenic belts and little sediments in old tectonic blocks. We also discuss compaction effects of the sediments and implications of tectonic history and geological evolution of the major basins in the continental China based on the inferred seismic models. This study provides an effective mean of seismic imaging through joint inversion of various seismic constraints and establishes a framework of seismic data sharing for future studies in the seismological community in a first step of developing a China Seismological Reference Model.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3